
CATEGORY THEORY

RING THEORY

A WORKSHEET APPROACH

PAUL L. BAILEY

Worksheet Instructions

Here is a series of definitions and problems designed with the intent to help you master the essential
aspects of ring theory. If you would like to use them, I suggest that you proceed as follows.

You may assume all of your previous knowledge of sets, functions, and numbers. In particular, understand
and use the propositions regarding integers, such as prime factorization and the formulas n = mq + r and
xm + yn = gcd(m,n). Try to use only that knowledge of group theory that seems presupposed by the
problem.

Proceed directly from the definitions on the worksheet without looking in the book for further explanation
or proofs. I think that all problems can be solved using the previous knowledge mentioned above, definitions
given in the worksheets, and previous results that you will have shown from the worksheets. I’ve found
that for me, after having been exposed to the subject initially, this is really the best way to learn abstract
mathematics.

For some of the worksheets, you may wish to merely read the definitions and statements so that you can
use them on later worksheets.

For some of the problems, you may see the proof clearly without writing it down. For other problems, it
probably is a good idea to try to write a proof on paper.

The definition of ring here is slightly different from that used by some authors (e.g. Fraleigh), and we
have corresponding differences in the definition of subring and homomorphism:

• Assume that all rings have a multiplicative identity, or unity;
• Assume that all subrings contain the same unity;
• Assume that all ring homomorphisms send unity to unity.

This approach simplifies some statements about the cases in which we are most interested, and is standard
in algebraic geometry, where commutative ring theory plays the leading role.
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Worksheet I - Rings

Definition 1. A ring is a set R together with a pair of binary operations

+ : R×R→ R and · : R×R→ R

such that
(R1) a+ b = b+ a for every a, b ∈ R;
(R2) (a+ b) + c = a+ (b+ c) for every a, b, c ∈ R;
(R3) there exists 0 ∈ R such that a+ 0 = a for every a ∈ R;
(R4) for every a ∈ R there exists −a ∈ R such that a+ (−a) = 0;
(R5) (ab)c = a(bc) for every a, b, c ∈ R;
(R6) there exists 1 ∈ R such that a · 1 = 1 · a = a for every a ∈ R;
(R7) a(b+ c) = ab+ ac for every a, b, c ∈ R;
(R8) (a+ b)c = ac+ bc for every a, b, c ∈ R.

Remark 1. Properties (R1) through (R4) say that R is an abelian group under addition. Properties (R5)
and (R6) say that R is a monoid under multiplication. Properties (R7) and (R8) relate the two binary
operations on R.

Definition 2. We say that a ring R is commutative if ab = ba for every a, b ∈ R.

Problem 1. Let R be a ring and let x, y ∈ R such that x+ a = a and y + a = a for every a ∈ R.
Show that x = y. Thus 0 is unique. We call 0 the additive identity, or zero, of R.

Problem 2. Let R be a ring and let x, y ∈ R such that xa = ax = a and ya = ay = a for every a ∈ R.
Show that x = y. Thus 1 is unique. We call 1 the multiplicative identity, or unity, of R.

Problem 3. Let R be a ring and let a, b, c ∈ R such that a+ b = 0 and a+ c = 0.
Show that b = c. Thus −a is unique. We call −a the additive inverse of a.

Problem 4. Let R be a ring and let a, b, c ∈ R and suppose that ab = ba = 1 and ac = ca = 1.
Show that b = c. Denote such an element by a−1. Thus a−1 is unique if it exists. We call a−1 the
multiplicative inverse, or simply the inverse, of a.

Remark 2. The standard rules for additive and multiplicative notation are in force.
The additive identity is denoted by 0 and the additive inverse of a is denoted −a. If n ∈ Z, then na = 0

if n = 0, na = a+ · · ·+ a (n times) if n > 0, and na = (−a) + · · ·+ (−a) (n times) if n < 0.
The multiplicative identity is denoted by 1 and the multiplicative inverse of a (if it exists) is denoted by

a−1. If n ∈ N, then an = 1 if n = 0 and an = a · · · · · a (n times) if n > 0. If a has a multiplicative inverse
and n < 0, then an = (a−1)−n. The notation 00 is undefined. The product symbol · may be dropped, so
that multiplication is denoted by juxtiposition.

Problem 5. Let R be a ring and let a, b ∈ R.
(a) Show that a · 0 = 0 · a = 0.
(b) Show that (−a)b = a(−b) = −(ab).

Problem 6. Let R be a ring and let a, b ∈ R. Let n ∈ N.
(a) Show that n(ab) = (na)b = a(nb).
(b) Show that (−n)a = −(na).

Remark 3. To emphasize that a certain element acts as an identity in the ring R, we may write 0R or 1R
instead of just 0 or 1. This is useful when comparing rings.



Worksheet II - Examples of Rings

Remark 4. To show that R is a ring, you must verify that the given operations addition and multiplication
are well-defined functions from R×R to R, and that they satisfy the properties (R1) through (R8).

In practice, however, many of these steps are tedious, and only the ones in question or of interest are
verified. In particular, check that the binary operations are well-defined (if this is an issue) and closed (that
is, into R); specify the zero, the form of additive inverses, the unity, and the form of multiplicative inverses.

Problem 7. Let R = {0}. Define 0 + 0 = 0 and 0 · 0 = 0.
Show that R is a ring, called the zero ring .

Remark 5. If R is a ring in which the additive and multiplicative identities are the same element, then R
is the zero ring, because if a ∈ R, then 0 = 0 · a = 1 · a = a, so a = 0.

Problem 8. Verify that the following are rings under their standard addition and multiplication:
(a) Z = {. . . ,−2,−1, 0, 1, 2, . . . }, the integers;
(b) Q = {ab | a, b ∈ Z}, the rational numbers;
(c) R, the real numbers;
(d) C = {a+ ib | a, b ∈ R and i2 = −1}, the complex numbers.

Problem 9. Let R and S be rings. Define addition and multiplication on their cartesian product R × S
coordinatewise by

• (r1, s1) + (r2, s2) = (r1 + r2, s1 + s2);
• (r1, s1) · (r2, s2) = (r1s1, r2s2).

Verify that R× S is a ring, called the product ring of R and S.

Problem 10. Let X be a set and let P(X) be the collection of all subsets of X. Define addition and
multiplication on P(X) by

• A+B = A4B = (A ∪B) r (A ∩B) = (ArB) ∪ (B rA);
• A ·B = A ∩B.

Verify that P(X) is a commutative ring, called the power set of X.

Problem 11. Let X be a set and let R be a ring. Let F(X,R) denote the set of all functions from X to R.
Define addition and multiplication of functions in F(X,R) pointwise by

• (f + g)(x) = f(x) + g(x);
• (f · g)(x) = f(x)g(x).

Verify that F(X,R) is a ring, called the ring of functions from X to R.

Problem 12. Let A be an additive abelian group and set

End(A) = {f : A→ A | f(a+ b) = f(a) + f(b) for all a, b ∈ A}.
Define addition and multiplication of functions in End(A) by

• (f + g)(a) = f(a) + g(a);
• (f · g)(a) = f ◦ g(a) = f(g(a)).

Verify that End(A) is a ring, called the ring of endomorphisms of A.



Worksheet III - Commutative Invertibility and Entireness

Definition 3. Let R be a commutative ring and let a ∈ R.
We say that a is entire if ab = 0⇒ b = 0 for every b ∈ R.
We say that a is cancellable if ab = ac⇒ b = c for every b, c ∈ R.
We say that a is invertible if there exists an element a−1 ∈ R such that aa−1 = 1.

Problem 13. Let R be a commutative ring and let a ∈ R. Show that a is entire if and only if a is cancellable.

Problem 14. Let R be a commutative ring and let a ∈ R. Show that if a is invertible, then a is entire.

Definition 4. Let R be a nonzero commutative ring. Set

R∗ = {x ∈ R | x is invertible }
and

R• = {x ∈ R | x is entire }.

Problem 15. Let R and S be nonzero commutative rings.
(a) Show that (R× S)∗ = R∗ × S∗.
(b) Show that (R× S)• = R• × S•.

Problem 16. Let R be a nonzero commutative ring. Show that R∗ is an abelian group under multiplication.

Definition 5. Let R be a commutative ring and let a ∈ R.
We say that a is a zero divisor if a 6= 0 and there exists b ∈ Rr {0} such that ab = 0.

Problem 17. Let R be a commutative ring and let a ∈ R.
Show that a is a zero divisor if and only if a is a nonzero nonentire element of R.

Problem 18. Let R and S be commutative rings and let A be the set of zero divisors in R× S. Show that

A = R× S r ((R• × S•) ∪ {(0R, 0S)}).

Definition 6. Let R be a nonzero commutative ring.
We say that R is an integral domain if every nonzero element of R is entire.
We say that R is a field if every nonzero element of R is invertible.

Problem 19. Let R be a commutative ring. Show that if R is a field, then R is an integral domain.

Problem 20. Let R be a finite integral domain. Let a ∈ Rr {0} and define a function

µa : R→ R given by µa(x) = ax.

(a) Show that µa is injective.
(b) Show that µa is surjective.
(c) Show that a is invertible.
(d) Conclude that R is a field.



Worksheet IV - General Invertibility and Entireness

Definition 7. Let R be a ring and let a ∈ R.
We say that a is entire if ab = 0⇒ b = 0 and ba = 0⇒ b = 0 for every b ∈ R.
We say that a is cancellable if ab = ac⇒ b = c and ba = ca⇒ b = c for every b, c ∈ R.
We say that a is invertible if there exists an element a−1 ∈ R such that aa−1a−1a = 1.

Remark 6. These definitions are compatible with our defintions in the commutative case, and supercede
them.

Problem 21. Let R be a ring and let a ∈ R. Suppose that there exist b, c ∈ R such that ab = 1 and ca = 1.
Show that b = c, so that a is invertible.

Problem 22. Let R be a ring and let a ∈ R. Show that a is entire if and only if a is cancellable.

Problem 23. Let R be a ring and let a ∈ R. Show that if a is invertible, then a is entire.

Definition 8. Let R be a nonzero ring. Set

R∗ = {x ∈ R | x is invertible }
and

R• = {x ∈ R | x is entire }.

Problem 24. Let R and S be nonzero rings.
(a) Show that (R× S)∗ = R∗ × S∗.
(b) Show that (R× S)• = R• × S•.

Problem 25. Let R be a nonzero ring. Show that R∗ is a group under multiplication.

Definition 9. Let R be a ring and let a ∈ R.
We say that a is a zero divisor if a 6= 0 and there exists b ∈ Rr {0} such that ab = 0 or ba = 0.

Problem 26. Let R be a ring and let a ∈ R.
Show that a is a zero divisor if and only if a is a nonzero nonentire element of R.

Problem 27. Let R and S be rings and let A be the set of zero divisors in R× S. Show that

A = R× S r ((R• × S•) ∪ {(0R, 0S)}.

Definition 10. Let R be a nonzero ring.
We say that R is a domain if every nonzero element of R is entire.
We say that R is a division ring if every nonzero element of R is invertible.

Problem 28. Let R be a ring. Show that if R is a division ring, then R is an domain.

Problem 29. Let R be a finite domain. Show that R is a division ring.



Worksheet V - Subrings

Definition 11. Let R be a ring. A subring of R is a subset S ⊂ R such that
(S0) 1 ∈ S;
(S1) a, b ∈ S ⇒ a+ b ∈ S;
(S2) a ∈ S ⇒ −a ∈ S;
(S3) a, b ∈ S ⇒ ab ∈ S.

If S is a subring of R, we write S ≤ R.

Remark 7. Properties (S1) and (S2) say that S is an additive subgroup of R.

Problem 30. Let R be a ring and let S ≤ R.
Show that the restriction of + and · to S × S induces a ring structure on S.

Problem 31. Let R be a ring. Show that R ≤ R.

Problem 32. Let F be a field and let R ≤ F . Show that R is an integral domain.

Problem 33. Let R be a ring and define the center of R to be

Z(R) = {x ∈ R | xy = yx for all y ∈ R}.
Show that Z(R) ≤ R.

Definition 12. A subfield of R is a subring F ≤ R such that
(F1) a, b ∈ F ⇒ ab = ba;
(F2) a ∈ F r {0} ⇒ a is invertible and a−1 ∈ F .

Problem 34. Let R be a ring and let F ≤ R be a subfield.
Show that the restriction of + and · to F × F induces a field structure on F .

Definition 13. Let X be a set and let C ⊂ P(X) be a collection of subsets of X. Define the intersection
and union of the collection by

• ∩C = {x ∈ X | x ∈ C for all C ∈ C};
• ∪C = {x ∈ X | x ∈ C for some C ∈ C}.

Problem 35. Let R be a ring and let S be a nonempty collection of subrings of R.
Show that ∩S is a subring of R.

Problem 36. Let R be a ring and let S be a nonempty collection of subfields of R.
Show that ∩S is a subfield of R.

Definition 14. Let R be a ring and let X ⊂ R. The subring generated by X is denoted by grR(X) and is
defined to be the intersection of all subrings of R which contain X.

Problem 37. Let R be a ring and let X ⊂ R. Show that grR(X) ≤ R.

Problem 38. Let R be a ring and let X,Y ⊂ R. Show that if X ⊂ Y , then grR(X) ≤ grR(Y ).

Problem 39. Let R be a ring and let X,Y ⊂ R. Show that grR(X ∩ Y ) ⊂ grR(X) ∩ grR(Y ).

Problem 40. Let R be a ring and let X,Y ⊂ R. Give an example where grR(X ∩ Y ) 6= grR(X) ∩ grR(Y ).

Definition 15. Let F be a field and let X ⊂ F . The subfield generated by X is denoted by gfF (X) and is
defined to be the intersection of all subfields of F which contain X.

Problem 41. Let F be a field and let X,Y ⊂ F . Show that gfF (X ∩ Y ) ⊂ gfF (X) ∩ gfF (Y ).



Worksheet VI - Ring Homomorphisms

Definition 16. Let R and S be rings. A ring homomorphism from R to S is a function φ : R → S such
that
(H0) φ(1R) = 1S ;
(H1) φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;
(H2) φ(ab) = φ(a)φ(b) for all a, b ∈ R.

A bijective ring homomorphism is called a ring isomorphism. If there exists a ring isomorphism from R
to S we say that R and S are isomorphic, and write R ∼= S.

An isomorphism from a ring onto itself is called a ring automorphism.

Remark 8. Property (H1) says that φ is an additive group homomorphism.

Problem 42. Let φ : R→ S be a ring homomorphism.
(a) Show that φ(0R) = 0S .
(b) Show that φ(−r) = −φ(r) for every r ∈ R.

Problem 43. Let φ : R→ S be a ring homomorphism with S nonzero.
Show that if r ∈ R is invertible, then φ(r) is invertible and φ(r−1) = φ(r)−1.

Problem 44. Give an example of a ring homomorphism φ : R → S such that φ(r) = s for some r ∈ R,
s ∈ S, where s is invertible but r is not.

Problem 45. Let φ : R→ S be a ring isomorphism. Then φ−1 : S → R is a bijective function. Show that
φ−1 is a ring isomorphism.

Problem 46. Let φ : R→ S be a ring homomorphism and let T ≤ R.
Show that φ(T ) ≤ S.

Problem 47. Let φ : R→ S be a ring homomorphism and let T ≤ S.
Show that φ−1(T ) ≤ R.

Problem 48. Let φ : R→ S and ψ : S → T be ring homomorphisms.
Show that ψ ◦ φ : R→ T is a ring homomorphism.

Problem 49. Let φ : R→ S be a ring homomorphism and let X ⊂ R.
Show that φ(grR(X)) = grS(φ(X)).

Problem 50. Let E and F be a fields.
Let φ : E → F be a ring homomorphism and let X ⊂ E.
Show that φ(gfE(X)) = gfF (φ(X)).

Problem 51. Let φ : R→ S be a ring homomorphism. Let φ∗ : R∗ → S be the restriction of φ to R∗.
(a) Show that φ∗ : R∗ → S∗ is a group homomorphism.
(b) Show that if φ is an bijective, then φ∗ is bijective.

Problem 52. Let φ : F → S be a ring homomorphism, where F is a field and S is nonzero.
Show that φ is injective. Thus the image of F in S is a subfield of S which is isomorphic to F .



Worksheet VII - Ideals

Definition 17. Let R be a ring. An ideal of R is a subset I ⊂ R such that
(I1) a, b ∈ I ⇒ a+ b ∈ I;
(I2) a ∈ I and r ∈ R⇒ ra, ar ∈ I.

If I is an ideal of R, we write I / R.

Remark 9. Since −1 ∈ R, properties (I1) and (I2) say that I is an additive subgroup of R.

Problem 53. Let R be a ring. Show that {0} / R and R / R.

Definition 18. Let R be a ring and let I / R.
We say that I is improper if I = R; otherwise I is proper.
We say that I is trivial if I = {0}; otherwise I is nontrivial.
We say that R is simple if I / R⇒ I = {0} or I = R.

Problem 54. Let R be a ring and I / R. Show that if I contains an invertible element, then I is improper.

Problem 55. Let R be a commutative ring. Show that R is simple if and only if R is a field.

Problem 56. Let R be a ring and let I be a collection of ideals of R. Show that ∩I / R.

Problem 57. Let R be a ring and let I, J / R. Set

I + J = {a+ b | a ∈ I, b ∈ J}.
Show that I + J / R.

Definition 19. Let φ : R→ S be a ring homomorphism. The kernel of φ is denoted by ker(φ) and is defined
to be the subset of R given by

ker(φ) = {r ∈ R | φ(r) = 0S}.

Problem 58. Let φ : R→ S be a ring homomorphism.
Show that ker(φ) / R.

Problem 59. Let φ : R→ S be a ring homomorphism.
Show that φ is injective if and only if ker(φ) = {0}.

Problem 60. Let φ : R→ S be a ring homomorphism and let J / S.
Show that φ−1(J) / R.

Problem 61. Let φ : R→ S be a surjective ring homomorphism and let I / R.
Show that φ(I) / R.

Problem 62. Give an example of a nonsurjective ring homomophism φ : R → S and an ideal I / R such
that φ(I) is not an ideal in S.

Problem 63. Let R be a ring and let I be a nonempty collection of ideals in R. Show that ∩I / R.

Definition 20. Let R be a ring and let X ⊂ R. The ideal generated by X is denoted giR(X) or 〈X〉 and is
defined to be the intersection of all ideals of R which contain X.

Problem 64. Let R be a ring and let I, J / R. Show that giR(I ∪ J) = I + J .

Problem 65. Let φ : R→ S be a surjective ring homomorphism and let X ⊂ R.
Show that φ(giR(X)) = giS(φ(X)).



Worksheet VIII - Factor Rings

Definition 21. Let R be a ring and let I / R. Let x ∈ R. The coset for x of I in R is the set

x+ I = {x+ a | a ∈ I}.
Let x, y ∈ R. We say that x and y are congruent modulo I, and write x ≡ y mod I, if x− y ∈ I.

Problem 66. Let R be a ring and let I / R.
(a) Show that 0 ∈ I.
(b) Let x, y ∈ R. Show that x+ I = y + I ⇔ x− y ∈ I.

Remark 10. Recall that the cardinality of a set X is denoted |X| and is (loosely speaking) the number of
elements in the set. To show that |X| = |Y |, is suffices to find a bijective function from X to Y .

Problem 67. Let R be a ring and let I / R.
(a) Show that congruence modulo I is an equivalence relation.
(b) Show that the congruence classes modulo I are the cosets of I in R.
(c) Show that |x+ I| = |y + I| for every x, y ∈ R.
(d) Conclude that if R is finite, then the cardinality of R is equal to the cardinality of I times the number
of cosets of I in R.

Problem 68. Let R be a ring and let I / R. Let R/I denote the collection of cosets of I in R. Define
addition and multiplication on R/I by (x + I) + (y + I) = (x + y) + I and (x + I)(y + I) = xy + I. Show
that these operations are well-defined and induce a ring structure on R/I. We call R/I a factor ring, or the
quotient of R by I.

Problem 69. Let R be a ring and let I / R. Define a function β : R → R/I by β(x) = x + I. Show that
β is a surjective ring homomorphism whose kernel is I. We call β the canonical homomorphism from R to
R/I.

Remark 11. Thus every kernel is an ideal and every ideal is a kernel.

Definition 22. Let R be a ring and let r, s ∈ R. Then Lie bracket of r and s is

[r, s] = rs− sr.

Problem 70. Let R be a ring and set

I = giR({[r, s] | r, s ∈ R}).
Show that R/I is commutative.

Problem 71. Let R be a commutative ring and set

I = giR(RrR∗).

Show that if I is a proper ideal, then R/I is a field.



Worksheet IX - Isomorphism Theorem

Problem 72. (Isomorphism Theorem)
Let φ : R → S be a ring homomorphism and let K = ker(φ). Let β : R → R/K be the canonical
homomorphism. Define a function φ : R/K → S by φ(x+K) = φ(x).
(a) Show that φ is well-defined.
(b) Show that φ is an injective ring homomorphism.
(c) Show that φ = φ ◦ β.
(d) Show that if φ is surjective, then φ is a ring isomorphism.

Remark 12. Thus every homomorphic image of R is isomorphic to a quotient of R, and every quotient of
R is a homomorphic image of R.

Problem 73. Let R be a ring and let I, J / R such that I ⊂ J . Let β : R→ R/I and α : R→ R/J be the
canonical homomorphisms. Set J/I = {a+ I ∈ R/I | a ∈ J}. Define γ : R/I → R/J by γ(a+ I) = a+ J .
(a) Show that γ is a well-defined surjective ring homomorphism.
(b) Show that α = γ ◦ β.
(c) Show that J/I / R/I.
(d) Show that

R

J
∼=
R/I

J/I
.

Problem 74. (Correspondence Theorem)
Let φ : R→ S be a surjective ring homomorphism and let K = ker(φ). Set

I = {I / R | K ⊂ I} and J = {J / S}.
Define a function

Φ : I→ J by Φ(I) = φ(I).

(a) Show that Φ is bijective.
(b) Show that I1 ⊂ I2 ⇔ Φ(I1) ⊂ Φ(I2).

Remark 13. Thus the ideals in the range of a ring homomorphism correspond to the ideals in the domain
which contain the kernel. This correspondence is inclusion preserving. Via the isomormorphism theorem,
this is equivalent to the fact that the ideals in R which contain I correspond to the ideals in R/I.

Problem 75. (Chinese Remainder Theorem)
Let R be a commutative ring and let I, J / R such that I + J = R.
Define a function φ : R→ R/I ×R/J by φ(r) = (r + I, r + J).
(a) Show that for every a ∈ R there exist x, y ∈ R such that x ≡ a mod I and y ≡ a mod J .
(b) Show the φ is a surjective homomorphism with kernel I ∩ J .
(c) Conclude that

R/(I ∩ J) ∼= R/I ×R/J.



Worksheet X - Characteristic

Problem 76. Let Z be the set of integers and for n ∈ Z, set nZ = {na | a ∈ Z}.
Show that nZ / Z, so that Z/nZ is a ring.

Problem 77. Let I / Z. Show that there exists a unique nonnegative integer n ∈ Z such that I = nZ. We
say that n generates I, since I is the ideal generated by the set {n} in Z.

Definition 23. Let n be a positive integer. Set Zn = Z/nZ. We call Zn the ring of integers modulo n.

Problem 78. Let n be a positive integer. Show that the following conditions are equivalent.

(i) n is prime;
(ii) Zn is an integral domain;

(iii) Zn is a field.

Remark 14. Thus every quotient of Z by a nontrivial ideal is either a field or a nondomain. We will see
later that this holds for every commutative ring R whose ideals are of the form aR for some a ∈ R.

Problem 79. Let R be a ring. Show that there exists a unique ring homomorphism φ : Z→ R.

Definition 24. Let R be a ring and let φ : Z→ R be the unique ring homomorphism from Z to R.
The characteristic of R is the unique nonnegative generator of ker(φ). Denote this integer by char(R).
The characteristic subring of R is φ(Z), the image of Z in R under φ. Denote this subring by H(R).

Remark 15. Viewing a ring R as an additive group, let ord+(a) denote the additive order of a ∈ R.

Problem 80. Let R be a ring and let φ : Z→ R be the unique ring homomorphism from Z to R. Let n ∈ N
be a positive integer. Show that the following statements are equivalent:

(i) n = char(R);
(ii) n = ord+(1);

(iii) na = 0 for every a ∈ R;
(iv) H(R) ∼= Zn.

Problem 81. Let R be a ring.
(a) Show that H(R) = grR({1}).
(b) Show that H(R) ≤ Z(R).

Problem 82. Let D be an integral domain.
(a) Show that either char(R) = 0 or char(R) = p for some prime p.
(b) Show that either H(R) ∼= Z or H(R) ∼= Zp for some prime p.

Problem 83. Let R be a ring and let φ : R→ R be an automorphism.
Show that φ(a) = a for every a ∈ H(R).



Worksheet XI - Principal, Maximal, and Prime Ideals

Definition 25. Let R be a ring and let I / R.
We say that I is a principal ideal if I = giR({a}) for some a ∈ R.

Problem 84. Let R be a commutative ring and let a ∈ R. Let aR = {ax | x ∈ R}.
Show that aR is a principal ideal.

Problem 85. Let R be a commutative ring and let I / R be a principal ideal.
Show that there exists a ∈ R such that I = aR.

Problem 86. Let φ : R→ S be a surjective ring homomorphism, where R is commutative.
(a) Let a ∈ R. Show that φ(aR) = φ(a)S.
(b) Conclude that the surjective homomorphic image of a principal ideal is principal.

Definition 26. A principal ring is a commutative ring in which all ideals are principal.

Problem 87. Let R be a principal ring.
(a) Let I / R. Show that R/I is a principal ring.
(b) Let φ : R→ S be a surjective ring homomorphism. Show that S is a principal ring.

Definition 27. A principal ideal domain (pid) is an integral domain in which all ideals are principal.

Remark 16. Recall that every ideal in Z is generated by a unique nonnegative integer. Thus Z is a pid.

Definition 28. Let R be a commutative ring and let I / R.
We say that I is prime if ab ∈ I ⇒ a ∈ I or b ∈ I for all a, b ∈ R.

Problem 88. Let R be a commutative ring.
Show that {0} is a prime ideal if and only if R is an integral domain.

Problem 89. Let R be a commutative ring and let I / R.
Show that I is prime if and only if R/I is an integral domain.

Definition 29. Let R be a commutative ring and let I / R.
We say that I is maximal if whenever I ⊂ J / R, then either J = I or J = R.

Problem 90. Let R be a commutative ring.
Show that {0} is maximal if and only if R is a field.

Problem 91. Let R be a commutative ring and let I / R.
Show that I is maximal if and only if R/I is a field.
(Hint: use the Correspondence Theorem.)

Problem 92. Let R be a commutative ring and let I / R.
Show that if I is maximal, then I is prime.

Problem 93. Let R be a pid and let I / R be a nontrivial proper ideal.
Show that I is maximal if and only if I is prime.

Problem 94. Let R be a pid and let I / R be a nontrivial proper ideal.
Show that R/I is either a field or a nondomain.

Problem 95. Let φ : R→ S be a ring homomorphism, where R is a pid.
Show that φ(R) is either a field or a nondomain.

Problem 96. Let R and S be commutative rings and let φ : R→ S be a ring homomorphism. Let J / S.
(a) Show that if J is prime, then φ−1(J) is prime.
(b) Show that if J is maximal, then φ−1(J) is maximal.



Worksheet XII - Irreducible and Prime Elements

Definition 30. Let R be a commutative ring and let a, b ∈ R.
We say that a divides b, and write a | b, if there exists c ∈ R such that b = ac. Otherwise we write a - b.

Definition 31. Let R be a commutative ring and let a, b ∈ R•.
We say that a and b are associates, and write a ∼ b, if a | b and b | a.

Problem 97. Let R be a commutative ring and let a, b ∈ R•.
(a) Show that a ∼ b if and only if there exists an invertible element u ∈ R such that b = ua.
(b) Show that ∼ is an equivalence relation on R•.

Problem 98. Let R be a commutative ring and let a, b ∈ R•.
(a) Show that bR ⊂ aR if and only if a | b.
(b) Show that bR = aR if and only if a ∼ b.
(c) Show that abR ⊂ aR ∩ bR.

Definition 32. Let R be a commutative ring and let p ∈ R• rR∗.
We say that p is irreducible if whenever p = ab, then either a is invertible or b is invertible.
We say that p is prime if whenever p | ab, then either p | a or p | b.

Problem 99. Let R be a commutative ring and let p, u ∈ R, where u is invertible.
(a) Show that if p is irreducible, then so is up.
(b) Show that if p is prime, then so is up.

Problem 100. Let D be an integral domain and let p ∈ D.
Show that p is a prime element if and only if pD is a prime ideal.

Problem 101. Let D be a pid and let p ∈ D.
Show that pD is maximal if and only if p is irreducible.

Problem 102. Let D an integral domain and let p ∈ D.
Show that if p is prime, then p is irreducible.

Problem 103. Let D be a pid and let p ∈ D.
Show that p is prime if and only if p is irreducible.



Worksheet XIII - Common Divisors and Multiples

Definition 33. Let R be a commutative ring and let a, b ∈ R•.
We say that d ∈ R• is a greatest common divisor of a and b, and write d � gcd(a, b), if

(GCD1) d | a and d | b;
(GCD2) e | a and e | b ⇒ e | d.

Problem 104. Let D be an integral domain and let a, b, d, e, u ∈ D, where u is invertible.
(a) Show that if d � gcd(a, b), then ud � gcd(a, b).
(b) Show that if d � gcd(a, b) and e � gcd(a, b), then d ∼ e.

Problem 105. Let D be a pid and let a, b ∈ D. Show that there exists d ∈ D such that d � gcd(a, b).

Problem 106. Let D be a pid and let a, b ∈ D. Let d � gcd(a, b).
Show that there exist x, y ∈ D such that d = ax+ by.

Definition 34. Let R be a commutative ring and let a, b ∈ R•.
We say that l ∈ R• is a least common multiple of a and b, and write l � lcm(a, b), if

(LCM1) a | l and b | l;
(LCM2) a | m and b | m ⇒ l | m.

Problem 107. Let D be an integral domain and let a, b, l,m, u ∈ D, where u is invertible.
(a) Show that if l � lcm(a, b), then ul � lcm(a, b).
(b) Show that if l � lcm(a, b) and m � lcm(a, b), then l ∼ m.

Problem 108. Let D be a pid and let a, b ∈ D. Show that there exists l ∈ D such that l � lcm(a, b).

Problem 109. Let D be a pid and let a, b ∈ D. Let d � gcd(a, b) and l � lcm(a, b).
Show that ab ∼ dl.

Definition 35. Let R be a commutative ring and let A ⊂ R•.
We say that d ∈ R• is a greatest common divisor of A and write d � gcd(A), if

(GCD1) d | a for every a ∈ A;
(GCD2) e | a for every a ∈ A ⇒ e | d.

Remark 17. This is a generalization of our previous definition of gcd, and coexists with it.

Problem 110. Let D be an integral domain. Let A ⊂ D and d, e, u ∈ D, where u is invertible.
(a) Show that if d � gcd(A), then ud � gcd(A).
(b) Show that if d � gcd(A) and e � gcd(A), then d ∼ e.

Problem 111. Let D be a pid and let A ⊂ D. Show that there exists d ∈ D such that d � gcd(A).

Problem 112. Let D be a pid and let A = {a1, . . . , an} ⊂ D. Let d � gcd(A).
Show that there exist xi ∈ D such that d =

∑n
i=1 xiai.

Definition 36. Let R be a commutative ring and let A ⊂ R•.
We say that l ∈ R• is a least common multiple of a and b, and write l � lcm(a, b), if

(LCM1) a | l and b | l;
(LCM2) a | m and b | m ⇒ l | m.

Remark 18. This is a generalization of our previous definition of lcm, and coexists with it.

Problem 113. Let D be an integral domain. Let A ⊂ D and let l,m, u ∈ D, where u is invertible.
(a) Show that if l � lcm(A), then ul � lcm(A).
(b) Show that if l � lcm(A) and m � lcm(A), then l ∼ m.

Problem 114. Let D be a pid and let A ⊂ D. Show that there exists l ∈ D such that l � lcm(A).



Worksheet XIV - Noetherian Rings

Definition 37. Let R be a commutative ring.
An ascending chain of ideals in R is a collection of ideals {Ii | i ∈ N} such that i < j ⇒ Ii ⊂ Ij :

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ii ⊂ . . .

Problem 115. Let R be a ring and let {Ii | i ∈ N} be an ascending chain of ideals. Show that ∪∞i=1Ii / R.

Definition 38. Let R be a commutative ring and let {Ii | i ∈ N} be an ascending chain of ideals.
We say that {Ii | i ∈ N} is eventually constant if there exists n ∈ N such that Ii = In for all i ≥ n.
We say that R is noetherian if every ascending chain of ideals in R is eventually constant.

Problem 116. Let D be a pid. Show that D is noetherian.
(Hint: the union of an ascending chain of ideals in D is also a principal ideal.)

Problem 117. Let D be a pid and let a ∈ D. Show that only finitely many prime ideals in D contain a.
(Hint: suppose not, and construct an ascending chain of ideals in D which is not eventually constant.)

Problem 118. Let D be a pid and let a, b ∈ D. Show that there exists a unique nonnegative integer n such
that bn divides a but bn+1 does not.

Problem 119. Let D be a pid and let a ∈ D. Let p1, . . . , pr be generators for the distinct prime ideals
which contain a. Show that there exist unique positive integers n1, . . . , nr such that

a ∼ pn1
1 . . . pnr

r .

Remark 19. We were after the above result, which we will use later. The following result will not be used
in later worksheets, but illuminates the nature of noetherian rings.

Definition 39. Let R be a commutative and and let I / R.
We say the I is finitely generated if there exist a1, . . . , an ∈ R such that I = 〈a1, . . . , an〉.

Problem 120. Let R be a commutative ring. Show that R is noetherian if and only if every ideal of R is
finitely generated.



Worksheet XV - Unique Factorization Domains

Definition 40. Let R be an integral domain.
Let a ∈ R. A complete factorization of a is a true expression of the form

a =

r∏
i=1

pmi
i ,

where pi ∈ R are irreducible elements and mi ∈ Z are positive integers. Such an expression is call essentially
unique if whenever

a =

s∏
j=1

q
nj

j

is another complete factorization of a, we have r = s and a permutation σ ∈ Sr such that qj ∼ pσi and
nj = mσi.

We say that R is a unique factorization domain (ufd) if every nonzero element of R has an essentially
unique complete factorization.

Problem 121. Let R be a pid. Show that R is a ufd.

Problem 122. Let R be a ufd and let a ∈ R. Show that a is prime if and only if a is irreducible.

Problem 123. Let R be a ufd and let a, b ∈ R.
(a) Show that there exists d ∈ R such that d � gcd(a, b).
(b) Show that there exists l ∈ R such that l � lcm(a, b).
(c) Show that ab ∼ dl.

Problem 124. Let R be a ufd and let a, b ∈ R.
Show that aR ∩ bR = abR⇔ 1 � gcd(a, b).

Definition 41. Let R be a commutative ring.
We say that R is seminoetherian if every ascending chain of principal ideals is eventually constant.

Problem 125. Let R be a ufd. Show that R is seminoetherian.

Fact 1. Let R be an integral domain. Then following conditions are equivalent:
(1) R is a ufd;
(2) R is seminoetherian and every irreducible element of R is prime;
(3) R is seminoetherian and every pair of nonzero elements in R has a gcd.



Worksheet XVI - Quotient Fields

Definition 42. Let D be an integral domain and let F be a field which contains D.
We say that F is a quotient field of D if for every x ∈ F there exist a, b ∈ D such that x = ab−1.

Example 1. Clearly Q is a quotient field for Z.

Problem 126. (Relabeling Lemma)

Let R and S̃ be rings. Let φ : R → S̃ be an injective ring homomorphism. Show that there exists a ring S

which contains R and an isomorphism ψ : S̃ → S such that ψ ◦ φ(a) = a for every a ∈ R.

Problem 127. (Existence of Quotient Fields)
Let R be a commutative ring.
(a) Show that if a, b ∈ R•, then ab ∈ R•. Also note that 1 ∈ R•.
Define a relation + on R×R• by

(a, b) + (c, d)⇔ ad = bc.

(b) Show that + is an equivalence relation.
Denote the equivalence class of (a, b) by [a, b], so that (a, b) + (c, d)⇔ [a, b] = [c, d]. Set

S̃ = {[a, b] | a ∈ R and b ∈ R•}.

Define addition and multiplication on S̃ by

[a, b] + [c, d] = [ad+ bc, bd] and [a, b] · [c, d] = [ac, bd].

(c) Show that these operations of addition and multiplication on S̃ are well defined.

(d) Verify that S̃ is a commutative ring.

(e) Show that the function φ : R→ S̃ given by φ(a) = [a, 1] is an injective homomorphism.

(f) Show that there exists a ring S isomorphic to S̃ such that S contains R and every entire element of R
is invertible in S.
(g) Show that if R is an integral domain, then S is a quotient field for R.

Problem 128. (Universal Property of Quotient Fields)
Let D be an integral domain and let F be a quotient field of D. Let E be a field containing D. Show that
there exists a unique injective homomorphism φ : F → E such that φ(a) = a for every a ∈ D.

Problem 129. Let D be an integral domain and let F be a field containing D. Suppose that for every field
E containing D there exists a unique homomorphism φ : F → E such that φ(a) = a for every a ∈ D. Show
that F is a quotient field for D.

Problem 130. Let D be an integral domain and let E be a field containing D. Set

qfE(D) = {x ∈ E | x = ab−1 for some a, b ∈ D}.
(a) Show that qfE(D) is a field.
(b) Show that qfE(D) is a quotient field for D.
(c) Show that qfE(D) = gfE(D).
We call qfE(D) the quotient field of D in E.

Problem 131. Let E be a field and let D be a subring of E. Let F = qfE(D).
Let ψ : E → E be an automorphism of E such that ψ �D= idD. Show that ψ �F= idF .

Problem 132. Let D be a pid and let F be a quotient field for D. Let x ∈ F .
Show that there exist a, b ∈ D with 1 � gcd(a, b) such that ab−1 = x.



Worksheet XVII - Polynomials

Definition 43. Let R be a commutative ring. A polynomial (in one indeterminant) over R is a sequence
f : N→ R such that f(n) = 0 for all but finitely many n ∈ N.

Let R[X] be the set of all polynomials over R, where X is the sequence (0, 1, 0, 0, 0, . . . ).
Define addition and multiplication on R[X] by

(ai)i + (bi)i = (ai + bi)i;

(ai)i · (bi)i = (
∑
j+k=i

ajbk)i.

Fact 2. Every element of R[X] is of the form f =
∑n
i=0 aiX

i, where n ∈ N and ai ∈ R for i = 1, . . . , n.
Moreover, R[X] is a commutative ring, and R embeds in R[X] via a 7→ (a, 0, 0, 0, . . . ); we consider R to

be a subring of R[X].

Definition 44. Let R be a commutative ring and let f = (ai) ∈ R[X]. Then degree of f is denoted deg(f)
and is defined by deg(f) = max{n ∈ N | ai 6= 0}. If f = 0, we set deg(f) = −∞.

We call the ai the coefficients of f ; a0 is called the constant coefficient and an is called the leading
coefficient.

Problem 133. Let R be a commutative ring and let f, g ∈ R[X].
(a) Show that deg(f + g) ≤ max{deg(f),deg(g)};
(b) Show that deg(fg) ≤ deg(f) + deg(g);
(c) Show that if R is an integral domain, then deg(fg) = deg(f) + deg(g).

Problem 134. Let D be an integral domain. Show that D[X] is an integral domain.

Problem 135. Let F be a field and let f ∈ F [X]. Show that f is invertible if and only if f ∈ F r {0}.

Definition 45. Let R be a subring of a commutative ring S. Let f ∈ R[X]; then f =
∑n
i=0 aiX

i. Let
s ∈ S and set f(s) =

∑n
i=0 ais

i ∈ S. We call f(s) f evaluated at s. In particular, note that R ≤ R[X], and
f(X) = f in this context. If f(s) = 0S , we say that s is a zero, or root, of f .

Problem 136. (Universal Property of Polynomial Rings)
Let R be a subring of a commutative ring S. Let s ∈ S and define a function

ψs : R[X]→ S by ψs(f) = f(s).

Show that ψs is a homomorphism, called the evaluation homomorphism.

Problem 137. (Division Algorithm for Polynomials)
Let R be a commutative ring and let f, g ∈ R[X] such that the leading coefficient of g is invertible. Show
that there exist unique polynomials q, r ∈ R[X] with deg(r) < deg(f) such that f = gq + r.
(Hint: consider the set {f − gq | q ∈ R[X]} ⊂ R[X]; this set contains a polynomial of minimal degree.)

Problem 138. Let R be a commutative ring. Let f ∈ R[X] and let a ∈ R.
Show that f(a) = 0 if and only if (X − a) | f(X).

Problem 139. Let R be an integral domain and let f ∈ R[X] of degree n.
Show that f has at most n roots in R.



Worksheet XVIII - Polynomial Factorization

Remark 20. Let R be a ring contained in a commutative ring S. Let f ∈ R[X]. Since the coefficients of f
lie in R ⊂ S, we may naturally view f ∈ S[X]. The primeness or irreducibility of f depends on whether we
view it as an element of R[X] or as an element of S[X].

Problem 140. Find a ring R contained in a commutative ring S and a polynomial f ∈ R[X] such that f
is irreducible in R[X] but not in S[X].

Problem 141. Let F be a field and let f ∈ F [X].
(a) Show that if f(x) is irreducible, then p(x) has no root in F .
(b) Show that if deg(f) ∈ {2, 3}, then f is irreducible if and only if f has no roots in F .

Problem 142. (Rational Roots Theorem)
Let D be an integral domain and let F be a quotient field for D. Let f(X) =

∑n
i=0 ciX

i ∈ D[X] and let
z ∈ F such that f(z) = 0. Then there exist a, b ∈ D with gcd(a, b) = 1 such that z = ab−1 ∈ D.
Show that if f(z) = 0, then a | c0 and b | cn.

Problem 143. Let R be a commutative ring and let I / R. Set

I[X] = {f(X) =

n∑
i=0

ciX
i ∈ R[X] | ci ∈ I for i = 0, . . . , n}.

For a ∈ R, set a = a+ I, and for f =
∑n
i=0 ciX

i ∈ R[X], set f =
∑n
i=0 ciX

i.

Define φ : R[X]→ R
I [X] by φ(f) = f .

(a) Show that φ is a ring homomorphism.
(b) Show that I[X] / R[X].

(c) Show that R[X]
I[X]

∼= R
I [X].

Definition 46. Let R be a commutative ring and let f ∈ R[X].
A proper factorization of f is a factorization f = gh, where deg(g) < deg(f) and deg(h) < deg(f).

Problem 144. Find a ring R and a polynomial f such that f is not irreducible but has no proper factor-
ization.

Problem 145. (Gauss’s Lemma)
Let D be a pid and let f, g, h ∈ D[X] such that f = gh. Let p ∈ D be a prime element. Show that if p
divides every coefficient of f , then either p divides every coefficient of g or p divides every coefficient of h.
(Hint: consider the ideal I = 〈p〉.)

Problem 146. Let D be a pid and let F be a quotient field of D. Let f ∈ D[X].
Show that if f is irreducible in F [X] if and only if f has no proper factorization in D[X].
(Hint: clear denominators, then cancel prime factors.)



Worksheet XVIX - Polynomial Irreducibility Criteria

Problem 147. (Modular Irreducibility Test)
Let D be a pid and let F be a quotient field for D. Let f =

∑n
i=0 aiX

i ∈ D[X] and let p ∈ D be a prime

element of D. Let D = D/〈p〉 and let f be the reduction of f modulo 〈p〉. Suppose:
(1) p does not divide an;
(2) f is irreducible in D[X].
Show that f is irreducible in F [X].
(Hint: suppose f reduces in F [X], and show that f reduces in D[X].)

Problem 148. (Eisenstein’s Criterion)
Let D be a pid and let F be a quotient field for D. Let f =

∑n
i=0 aiX

i ∈ D[X] and let p ∈ D be a prime
element of D. Suppose:
(1) p divides ai for i = 0, . . . , n− 1;
(2) p does not divide an;
(3) p2 does not divide a0.
Show that f is irreducible in F [X].
(Hint: suppose that f reduces in F [X]; then f reduces in D[X]. Write f = gh where g, h ∈ D[X], and
compare the coefficients of the product to the coefficients of f .)

Problem 149. Let p ∈ Z be a prime integer and set

Φp(X) = 1 +X +X2 + · · ·+Xp−1.

Show that Φp(X) is irreducible.
(Hint: first note that Φp(X) is irreducible if and only if Φp(X + 1) is irreducible.)

Fact 3. Let f ∈ C[X] with deg(f) > 0. Then there exists z ∈ C such that f(z) = 0.

Fact 4. Let f ∈ C[X] be irreducible. Then deg(f) = 1.

Fact 5. Let f ∈ R[X] be irreducible. Then either deg(f) = 1 or deg(f) = 2.



Worksheet XX - Minimum Polynomials

Definition 47. Let R be a subring of a commutative ring S and let s ∈ S.
Set R[s] = grS(R ∪ {s}); this is called the ring R extended by s.

Problem 150. Let R be a subring of a commutative ring S.
Let s ∈ S and let ψs : R[X]→ S be evaluation at s. Show that ψs(R[X]) = R[s].

Problem 151. Let F be a field. Show that F [X] is a pid.
(Hint: use the division algorithm.)

Remark 21. Let F be a field; we list the facts about principal ideals and pids which we have collected and
are significant for F [X]:

• If 〈f〉 = 〈g〉, then f = ug for some invertible element u ∈ F [X]. Since the invertible elements of
F [X] are the nonzero constants, we have u ∈ F r {0}.

• If I / F is a nonzero prime, then I is maximal;
• Every quotient of F [X] by a nontrivial proper ideal is either a field or a nondomain;
• If f ∈ F [X], then f is prime if and only if f is irreducible;
• If f, g ∈ F [X], then there exists d ∈ F [X] such that d � gcd(f, g), and d = af + bg for some
a, b ∈ F [X].

Definition 48. Let R be a commutative ring and let f ∈ R[X] be a nonconstant polynomial.
We say that f is monic if the leading coefficient of f is 1.

Problem 152. Let D be an integral domain and let f ∈ D[X] be monic. Show that there exist unique
monic irreducible polynomials g1, . . . , gr ∈ D[X] such that f =

∏r
i=1 gi.

Problem 153. Let F be a field and let I / F [X].
Show that there exists a unique monic polynomial f ∈ F [X] such that I = 〈f〉.

Problem 154. Let F be a field and let f, g ∈ F [X].
Show that there exists a unique monic polynomial d ∈ F [X] such that d � gcd(f, g).

Definition 49. Let F be a subfield of a field E and let α ∈ E.
The unique monic polynomial which generates the kernel of ψα is called the minimum polynomial of α.

Problem 155. Let F be a subfield of a field E and let α ∈ E.
Let f ∈ F [X] be the minimum polynomial of α.
(a) Show that F [X]/〈f〉 ∼= F [α].
(b) Show that 〈f〉 is a prime ideal.
(c) Show that f is either zero or is irreducible in F [X].

Definition 50. Let F be a subfield of a field E and let α ∈ E.
We say that α is algebraic over F if there exists a nonzero polynomial f ∈ F [X] such that f(α) = 0.

Otherwise we say that α is transcendental over F .

Problem 156. Let F be a subfield of a field E and let α ∈ E r F .
Let ψα : F [X]→ E be the evaluation map.
(a) Show that α is algebraic if and only if the minimum polynomial of α generates a maximal ideal.
(b) Show that if α is algebraic if and only if F [α] is a field.
(c) Show that α is transcendental if and only if the evaluation map ψα is injective.
(d) Show that if α is transcendental if and only if F [α] ∼= F[X].



Worksheet XXI - Splitting Fields

Definition 51. Let R be a commutative ring contained in a ring S and let s1, . . . , sn ∈ S. Set R[s1, . . . , sn] =
giS(R ∪ {s1, . . . , sn}); this is the ring R extended by s1, . . . , sn. If S = R[s1, . . . , sn], we say that s1, . . . , sn
generated S over R.

Definition 52. Let F be a field contained is a field E and let f ∈ F [X].
We say that f splits in E if f is the product of linear factors in E:

f(X) =

n∏
i=1

(X − αi), where αi ∈ E for i = 1, . . . , n.

We say that E is a splitting field for f over F if there exist α1, . . . , αn ∈ E such that
(SF1) f(X) =

∏n
i=1(X − αi);

(SF2) E = F [α1, . . . , αn].

Problem 157. Let F be a field and let f ∈ F [X] be an irreducible polynomial.

Let Ẽ = F [X]/〈f〉; we have seen that Ẽ is a field.

(a) Show that there exists an injective homomorphism φ : F → Ẽ.

(b) Show that there exists a field E which is isomorphic to Ẽ and contains F .
(c) Show that there exists α ∈ E such that f(α) = 0.
(d) Show that E = F [α].

Problem 158. Let F be a field and let f ∈ F [X] be an irreducible polynomial.
Show that there exists a field E which is a splitting field for f over F .

Problem 159. Let F be a field and let f ∈ F [X] be a nonconstant polynomial.
Show that there exists a field E which is a splitting field for f over F .

Problem 160. Let F be a field and let f ∈ F [X] be a a nonconstant polynomial.
Let E be a field in which f splits. Show that E contains a splitting field for f over F .

Multiple Roots

Definition 53. Let F be a field and let f ∈ F [X]. We define the derivative of f(X) =
∑n
i=0 aiX

i to be

f ′(X) =

n∑
i=0

iaiX
i−1.

Problem 161. Let F be a field and let f, g ∈ F [X].
(a) Show that (f + g)′ = f ′ + g′.
(b) Show that (fg)′ = fg′ + f ′g.

Problem 162. Let F be a field and let f ∈ F [X].
(a) Show that deg(f ′) ≤ deg(f)− 1.
(b) Show that if F has characteristic zero, then deg(f ′) = deg(f)− 1.
(c) Show that if F has characteristic p > 0, there exists a polynomial f ∈ F [X] such that deg(f ′) < deg(f)−1.

Definition 54. Let F be a field and let f ∈ F [X]. Let E be a field containing F in which f splits.
We say that a ∈ E is a multiple root of f if (X−a)n | f(X) in E[X] for some n ∈ N, n ≥ 2. The maximum

such n is called the order of the root.

Problem 163. Let F be a field and let a ∈ F .
Show that (X − a)2 | f ⇔ (X − a) | f and (X − a) | f ′.



Worksheet XXII - Finite Fields

Definition 55. Let G be a finite group.
The exponent of G, denoted exp(G), is defined as

exp(G) = min{n ∈ N | gn = 1 for all g ∈ G}.

Fact 6. Let G be a finite group and let n = |G|. Then gn = 1 for every g ∈ G.

Fact 7. Let G be a finite group. Then exp(G) ≤ |G|.

Fact 8. Let G be a finite abelian group. If exp(G) = |G|, then G is cyclic.

Problem 164. Let F be a field and let G be a finite subgroup of F ∗.
(a) Note that f(X) = Xexp(G) − 1 has at most exp(G) roots in F .
(b) Note that every element of G is a root of f(X).
(c) Conclude that F ∗ is cyclic.

Problem 165. Let G be a finite abelian group and let p be a prime integer. Suppose that gp = 1 for every
g ∈ G. Show that |G| = pk for some k ∈ N.

Problem 166. Let F be a finite field. Show that there exists a prime integer p and a positive integer n
such that |F | = pk.

Problem 167. Let F be a field of cardinality p, where p is a prime integer.
Show that F ∼= Zp. Denote this field by Fp.

Problem 168. Let k, p ∈ Z with k ≥ 2 and p prime.
(a) Let x be the number of monic polynomials of degree k in Fp. Find x.
(b) Let y be the number of monic polynomials of degree less than k in Fp. Find y.
(c) Show that x− y = p+ (p− 2)y.
(d) Conclude that there exists an irreducible polynomial of degree k over Fp.
(e) Let f ∈ Fp[X] be an irreducible polynomial of degree k. Show that Fp[X]/〈f〉 is a field of cardinality pk.

Problem 169. Let R be an integral domain with finite subfields E and F of the same cardinality.
Show that E = F .
(Hint: Let n = |E| = |F | and let f(X) = Xn −X ∈ R[X]. How many roots does f have in R? How many
roots does f have in E and in F?)

Fact 9. If E and F be finite fields such that |E| = |F |, then E ∼= F .

Problem 170. Let F be a finite field and let p = char(F ).
Define φ : R→ R by φ(a) = ap. Show that φ is an automorphism.



Worksheet XXIII - Vector Spaces

Definition 56. A vector space over a field F is a set V together with operations

+ : V × V → V and · F × V → V,

respectively called addition and scalar multiplication, satisfying:
(V1) x+ y = y + x for all x, y ∈ V ;
(V2) x+ (y + z) = (x+ y) + z for all x, y, z ∈ V ;
(V3) there exists 0V ∈ V such that x+ 0V = x for every x ∈ V ;
(V4) for every x ∈ V there exists −x ∈ V such that x+ (−x) = 0V ;
(V5) 1F · x = x for every x ∈ V ;
(V6) (ab)x = a(bx) for every a, b ∈ F and x ∈ V ;
(V7) (a+ b)x = ax+ bx for every a, b ∈ F and x ∈ V ;
(V8) a(x+ y) = ax+ ay for every a ∈ F and x, y ∈ V .

Remark 22. Properties (V1) through (V4) say that (V,+) is an additive abelian group. Let End(V )
denote the collection of additive group homomophisms of V .

Problem 171. Let V be a vector space over a field F . Let a ∈ F and x ∈ V .
(a) Show that 0F · x = 0V .
(b) Show that a · 0V = 0V .
(c) Show that (−1F ) · x = −x.

Problem 172. Let V be a vector space over a field F . Define a function φ : F → End(V ) by φa(v) = av,
where φa means φ(a) for each a ∈ F . Show that φ is a ring homomorphism.

Problem 173. Let A be an additive abelian group and let F be a field. Let φ : F → End(A) be a ring
homomorphism. Define scalar multiplication · : F × A → A by a · x = φa(x). Show that A together with
this scalar multiplication is a vector space.

Definition 57. Let V be a vector space over a field F .
A subspace of V is a subset W ⊂ V such that

(W1) x, y ∈W ⇒ x+ y ∈W ;
(W2) a ∈ F, x ∈W ⇒ ax ∈W .

If W is a subspace of V , this is denoted by W ≤ V .

Problem 174. Let V be a vector space over a field F and let W ≤ V . Show that the restriction of + and
· to W induces a vector space structure on W .

Problem 175. Let V be a vector space over a field F and let W be a collection of subspaces of V .
Show that ∩W ≤ V .

Definition 58. Let V be a vector space over a field F and let X ⊂ V . The subspace generated by x
is denoted by gvV (X) and is defined to be the intersection of all subspaces of V which contain X. This
subspace is called the span of X.

Problem 176. Let V be a vector space over a field F and let X = {v1, . . . , vn}. Show that

gvV (X) = {
n∑
i=1

aivi | ai ∈ F}.



Worksheet XXIV - Dimension

Definition 59. Let V be a vector space over a field F . Let B ⊂ V .
We say that B spans V is for every x ∈ V there exist a1, . . . , an ∈ F and v1, . . . , vn ∈ B such that

x =
∑n
i=1 aivi.

We say thatB is linearly independent if whenever v1, . . . , vn ∈ B are distinct elements ofB and a1, . . . , an ∈
F ,

n∑
i=1

aivi = 0⇒ ai = 0 for i = 1, . . . , n.

We say that B is a basis for V if B spans V and is linearly independent.

Problem 177. Let V be a vector space over a field F and let X ⊂ V span V . Show that V = gvV (X).

Problem 178. Let V be a vector space over a field F and let X ⊂ V be linearly independent. Let v ∈ X.
Show that gvV (X r {v}) is a proper subset of gvV (X).

Problem 179. Let V be a vector space over a field F and let X ⊂ V span V . Show that there exists a
subset B ⊂ X such that B is a basis for V .

Problem 180. Let V be a vector space over a field F and let X ⊂ V be linearly independent. Show that
there exists a subset Y ⊂ V such that X ∪ Y is a basis for V .

Problem 181. Let V be a vector space over a field F . Let A = {v1, . . . , vm} and B = {w1, . . . , wn} be
bases for V . Show that m = n.

Definition 60. Let V be a vector space over a field F . If V has a basis containing n elements, where n ∈ N,
we say that V is finite dimensional, and that n is the dimension of V ; this is denoted by dim(V ) = n.

Problem 182. Let V be a vector space over a field F and let U,W ≤ V . Set U+W = {u+w | u ∈ U,w ∈W}.
(a) Show that U +W ≤ V .
(b) Show that dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ).

Problem 183. Let F be a field and let n be a positive integer. Let Fn denote the cartesian product of F
with itself n times. Show that Fn is a vector space over F of dimension n.

Definition 61. Let V and W be a vector spaces over a field F .
A linear transformation from V to W is a function f : V →W such that

(L1) f(x+ y) = f(x) + f(y) for every x, y ∈ V ;
(L2) f(ax) = af(x) for every a ∈ F and x ∈ V .

Definition 62. Let V and W be a vector spaces over a field F . Let f : V →W be a linear transformation.
The kernel of f is ker(f) = {x ∈ V | f(x) = 0W }.

Problem 184. Let V and W be a vector spaces over a field F . Let f : V →W be a linear transformation.
Show that f is injective if and only if ker(f) = {0V }.

Problem 185. Let V and W be finite dimensional vector spaces over a field F . Let f : V →W be a linear
transformation.
(a) Show that f(V ) ≤W .
(b) Show that dim(V ) = dim(ker(f)) + dim(f(V )).

Problem 186. Let V be a vector space over a field F . Let EndF (V ) denote the set of all linear transfor-
mations from V into itself. Show that EndF (V ) is a subring of End(V ).

Problem 187. Let F be a field and let Mn(F ) denote the set of n× n matrices over F .
Verify that Mn(F ) is a ring under the standard definitions of matrix addition and matrix multiplication.

Problem 188. Let V be a vector space over a field F of dimension n.
Show that EndF (V ) ∼= Mn(F ) as rings.



Worksheet XXV - Field Extensions

Definition 63. A field extension E/F is a field F which is a subfield of a field E.

Problem 189. Let E/F be a field extension. Show that E is a vector space over F via ring addition and
multiplication.

Definition 64. Let E/F be a field extension.
We say that E/F is finite if E is a finite dimensional vector space over F . The degree of E/F is the

dimension of E as a vector space over F ; this dimension is denoted by [E : F ].

Problem 190. Let E/F be a field extension. Show that [E : F ] = 1⇔ E = F .

Problem 191. Let F be a subfield of a field E and let α ∈ E be algebraic over F . Let f be the minimum
polynomial of α over F and set n = deg(f) > 0.

(a) Show that F [α] = {
∑n−1
i=0 biα

i | bi ∈ F}.
(b) Show that

∑n−1
i=0 biα

i =
∑n−1
I=1 ciα

i if and only if bi = ci for i = 1, . . . , n− 1.
(c) Show that B = {1, α, . . . , αn−1} is a basis for F [α] as a vector space over F .
(d) Conclude that [F [α] : F ] = deg(f).

Problem 192. Let E/F and K/E be finite field extensions. Show that

[K : F ] = [K : E][E : F ].

(Hint: let {vi} ⊂ E be a basis for E/F and let {wj} ⊂ K be a basis for K/E. Consider {viwj}.)

Problem 193. Let F be a field and let f ∈ F [X] be an irreducible polynomial of degree n. Let E be a
splitting field if f over F . Show that [E : F ] divides n!.



Worksheet Exercises

Isomorphism Theorem

Problem 194. Let C = {f : R→ R | f is continuous }; note that C is a ring under pointwise addition and
multiplication. Let I = {f ∈ C | f(0) = 0}. Show that I is a maximal ideal of C and that C/I ∼= R.

Problem 195. Let R be a commutative ring. For f(X) = a0 + a1X + · · ·+ anX
n ∈ R[X], define

σ(f) =

n∑
i=0

ai; I = {f(X) ∈ R[X] : σ(f) = 0}.

Show that I is an ideal of R[X] and that R[X]/I ∼= R.

Problem 196. Let D be a pid and let a ∈ D be a prime element. Define a function

γ : D[X]→ D by γ(a0 + a1X + · · ·+ anX
n) = a0.

Set
I = {f(X) ∈ D[X] : a | γ(f)}.

Show that I is a maximal ideal of D[X] and that D[X]/I ∼= D/aD.

Problem 197. Let R be a commutative ring. Show that

R[X]

〈X2〉
∼=
{(

a b
0 a

) ∣∣∣a, b ∈ R}.
Problem 198. Let R be a commutative ring and let M1,M2/R be distinct maximal ideals. Let I = M1∩M2.
Show that I is an ideal of R and that R/I is not a domain.

Problem 199. Let φ : R → S be a ring homomorphism. Let J = ker(φ) and let I / R such that I ⊂ J .
Show that there exist homomorphisms α : R→ R/I and β : R/I → S such that φ = β ◦ α.

Direct Product

Problem 200. Let R and S be rings and let A ⊂ R× S. Set

T = {r ∈ R | (r, s) ∈ A for some s ∈ S} and U = {s ∈ S | (r, s) ∈ A for some r ∈ R}.
Show that A ≤ R× S if and only if T ≤ R, U ≤ S, and A = T × U .

Problem 201. Let R and S be commutative rings. Set

T = {(r, s) ∈ R× S | s = 0} and U = {(r, s) ∈ R× S | r = 0}.
Define p1 : R× S → R by p1(r, s) = r and p2 : R× S → S by p2(r, s) = s.
(a) Show that T / R× S and U / R× S.
(b) Show that p1 and p2 are ring homomorphisms with ker(p1) = U and ker(p2) = T .
(c) Show that R× S/T ∼= S and R× S/U ∼= R.

Problem 202. Let R and S be commutative rings. Let m = char(R) and n = char(S).
Find char(R× S) in terms of m and n.



Polynomials

Problem 203. Let R be a commutative ring in which every nonzero element is a root of f(X) = X2−1 = 0.
Show that R is commutative.

Problem 204. Let F be a finite field of cardinality 1331.
Show that the polynomial f(X) = X2 +X + 1 is irreducible over F .
(Hint: Note that X3 − 1 = (X − 1)(X2 +X + 1) and that F ∗ is a group under multiplication; what are the
possible orders of its elements?)

Problem 205. Let F be a finite field of cardinality 343.
Show that the polynomial f(X) = X5 +X4 +X3 +X2 +X + 1 splits in F [X].

Problem 206. Find all square roots of −1 in Z101.

Problem 207. Let F be a finite field of cardinality 243.
Show that

√
−1 does not exist in F .

Problem 208. Let F be a finite field of cardinality q, and suppose that q ≡ 3 mod 4.
Show that the polynomial f(X) = X2 + 1 is irreducible over F .

Problem 209. Show that Z51[X]/〈X2 − 15X − 1〉 is not a field.

Problem 210. Let R = Z3[X] be the ring of polynomials over Z3.
Find an ideal A / R such that R/A is a nondomain with six elements.

Problem 211. Find three nonisomorphic rings of cardinality four.

Problem 212. Classify each commutative ring as one of the following:

(F) a field;
(P) a pid which is not a field;
(D) a domain which is not a pid;
(R) a ring which is not a domain.

Justify your answer in each case.

(a) Z[X]/I, where I = 〈X − 16〉;
(b) Z[X]/I, where I = 〈X5 − 32〉;
(c) Z[X]/I, where I = 〈17〉;
(d) Z[α], where α = 43

12 ∈ Q;
(e) Q[X]/I, where I = 〈X − 16〉;
(f) Q[X]/I, where I = 〈X3 + 15X2 + 8X + 40〉;
(g) Q[X]/I, where I = 〈X4 + 2X2 + 1〉;
(h) Q[X]/I, where I = 〈X5 + 6X4 + 10X3 + 8X + 18〉;
(i) Q[α], where α =

3
√√

2 + 5
√

6 ∈ R;
(j) R[X]/I, where I = 〈7X2 − 9X + 3〉;
(k) R[α], where α ∈ C;
(l) C[α], where E/C is a field extension and α ∈ E rC.



Idempotents

Definition 65. Let R be a ring and let a ∈ R.
We say that a is idempotent if a2 = a.

Problem 213. Let R be a commutative ring and let a ∈ R be idempotent.
(a) Show that 1− a is idempotent.
(b) Show that aR is a commutative ring with identity element a.
(c) Show that R ∼= aR× (1− a)R as rings.

Problem 214. Let F be a field. Find a subring of F × F which is isomorphic to F [X]/〈X2 −X〉.

Definition 66. Let R be a ring.
We say that R is Boolean if every element in R is idempotent.

Problem 215. Let R be a Boolean ring.
(a) Show that char(R) = 2.
(b) Show that R is commutative.

Nilpotents

Definition 67. Let R be a ring and let a ∈ R.
We say that a is nilpotent if there exists n ∈ N such that an = 0.
We say that R is nilpotent free if the only nilpotent elements of R is 0.

Problem 216. Let R be a commutative ring and set

I = {a ∈ R | a is nilpotent}.
(a) Show that I / R.
(b) Show that R/I is nilpotent free.

Definition 68. Let R be a commutative ring and let I / R.
We say that I is radical if an ∈ I ⇒ a ∈ I, where a ∈ R and n ∈ N.
The radical of I is defined by

√
I = {a ∈ R | an ∈ I for some n ∈ N}.

Problem 217. Let R be a commutative ring and let I / R.
(a) Show that

√
I / R.

(b) Show that
√
I =

√√
I.

(c) Show that I is a radical ideal if and only if I =
√
I.

Problem 218. Let R be a commutative ring and let I / R.
Show that I is radical if and only if R/I is nilpotent free.

Problem 219. Let R be a commutative ring and let I be the intersection of all the prime ideals of R.
(a) Show that I / R.
(b) Show that R/I is nilpotent-free.
(c) Conclude that I is a radical ideal.



Algebraic Closure

Definition 69. A field K is called algebraically closed if every polynomial in K[X] has a root in K.

Definition 70. Let K be an algebraically closed field and let f ∈ K[X] be an irreducible polynomial. Show
that deg(f) = 1.

Problem 220. Let K be an algebraically closed field.
Show that there exists a bijective correspondence between the maximal ideals of K[X] and the points of K.

Problem 221. Let K be an algebraically closed field. Let E/K be a field extension and let α ∈ E rK.
Show that α is transcendental over K.

Fact 10. The field C is algebraically closed.

Problem 222. Find all ideals in the ring C[X]/〈X2〉 and determine if they are principal, prime, and/or
maximal.

Problem 223. Find all ideals in the ring C[X,Y ]/〈X2〉 and determine if they are principal, prime, and/or
maximal.

Ring of Functions

Problem 224. Let X be a nonempty set and let F be a field. Let A = {f : X → F}. Then A is a ring
under pointwise addition and multiplication.
For Y ⊂ X, set

A(Y ) = {f : Y → F}.
For Y ⊂ X, set

E(Y ) = {f ∈ A | f(y) = 0 for all y ∈ Y }.
For I / A, set

V (I) = {x ∈ A | f(y) = 0 for all f ∈ I}.
Let I be the collection of ideals of A and let P be the collection of subsets of X.
Let Y,Z ⊂ X and I, J / A.
(a) Show that E(Y ) / A.
(b) Show that Y ⊂ Z ⇔ E(Y ) ⊃ E(Z).
(c) Show that I ⊂ J ⇔ V (I) ⊃ V (J).
(d) Show that V (I + J) = V (I) ∩ V (J).
(e) Show that V (I ∩ J) = V (I) ∪ V (J).
(f) Show that E(Y ∪ Z) = E(Y ) ∩ E(Z).
(g) Show that E(Y ∩ Z) = E(Y ) + E(Z).
(h) Show that V : I→ P is a bijective function with inverse E : P→ I.
(i) Show that A is a principal ring which is usually not a domain.
(j) Show that I is maximal if and only if I = V ({x}) for some x ∈ X.
(k) Show that if x ∈ X, then A/E({x}) ∼= F .
(l) Show that A/E(Y ) ∼= A(Y ).
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